Quantification of Sawgrass Biomass in the Coastal Everglades

Caiyun (Karen) Zhang Department of Geosciences Florida Atlantic University

- Traditional biomass data collection
 - Labor-intensive, time-consuming, and limited plots/area
- Everglades
 - Sawgrass: cover 70% of the Florida Everglades
 - No remote sensing efforts have been made
- Objective
 - To develop remote sensing models for sawgrass biomass estimation

- Study site: Turkey Point Nuclear Generating Station of FPL
- Data
 - Field-based sawgrass quarterly biomass data during 2011-2014
 - Landsat imagery for model development
 - A week window of the field data: Nov. 2011, Nov. 2013, and May 2014
 - Landsat imagery for mapping
 - April 2014 and Nov. 2014
 - May 2016 and Oct. 2016

Results: Model performance

Table 1 Model performance for live and total biomass estimation based on 4-fold cross validation.

Live Biomass Modeling					
Pixel-based					
Statistical Metrics	ANN	SVM	RF	k-NN	MLR
CC(r)	0.92	0.87	0.84	0.85	0.58
MAE (g/m ²)	17.21	22.15	22.93	21.28	33.82
RMSE (g/m ²)	20.79	25.87	29.97	29.17	44.07
Object-based				•	
CC(r)	0.92	0.91	0.86	0.77	0.47
MAE (g/m ²)	15.74	16.32	18.54	24.38	36.10
RMSE (g/m ²)	20.35	21.31	27.35	38.87	49.56
Total Biomass Modeling					
Pixel-based		L			
CC(r)	0.91	0.75	0.72	0.57	0.47
MAE (g/m ²)	35.96	51.2	45.85	46.23	71.23
RMSE (g/m ²)	44.52	75.46	72.88	89.46	104.19
Object-based					
CC(r)	0.94	0.87	0.75	0.53	0.44
MAE (g/m ²)	31.55	41.53	42.78	52.29	70.57
RMSE (g/m ²)	36.27	56.65	71.93	92.27	109.28
CC: Correlation Coefficient (r); MAE: Mean Absolute Error;					
RMSE: Root Mean Squared Error.					
MLR: Multiple Linear Regression; SVM: Support Vector Machine;					
CC: Correlation Coefficient (<i>r</i>); MAE: Mean Absolute Error; RMSE: Root Mean Squared Error. MLR: Multiple Linear Regression; SVM: Support Vector Machine;					

RF: Random Forest; k-NN: k-Nearest Neighbor; ANN: Artificial Neural Network.

Figure 4 Scatter plots and regressions of in-situ measures, ANN and SVM estimations of live and total sawgrass biomass.

Figure 5 Live biomass maps for two harvest seasons in 2014 at scales of 50, 100, and 150, respective Figure 6 Live biomass maps for two harvest seasons in 2016 at scales of 50, 100, and 150, respective from an ensemble analysis of ANN and SVM estimations.

Figure 7 Total biomass maps for two harvest seasons in 2014 at scales of 50, 100, and 150, respeFigure 8 Total biomass maps for two harvest seasons in 2016 at scales of 50, 100, and 150, respective ANN estimation

 Uncertainty map for live biomass estimation using ANN and SVM

Figure 9 Uncertainty maps for live sawgrass biomass estimation derived from ANN and SVM models for two harvest seasons in 2014 and 2016, respectively.

.

Summary and Conclusions

- Developed object-based ensemble approach for biomass modeling
- Non-parametric modeling is better than parametric modeling
- Object-based modeling is a good alternative to the pixel-based modeling
- Ensemble modeling is promising in biomass estimation

Zhang, C., S. Denka, H. Cooper, and D. R. Mishra, 2018. Quantification of Sawgrass Marsh Aboveground Biomass in the Coastal Everglades Using Object-Based Ensemble Analysis and Landsat Data. *Remote Sensing of Environment*, 204, 366-379.

Thanks for your attention! Questions or comments?